Advancements in Force Transfer Around Openings for Wood Framed Shear Walls

Alese Ashuckian, PE, LEED AP

Engineered Wood Specialist APA – The Engineered Wood Association

Thank you for joining us.

The audio will be provided through the speakers on your computer (or headphones, if you prefer.) If you are having trouble with the audio, you can call in using this toll-free number and pin: 866-244-8528 Pin: 5508345

This webinar will be recorded and available on www.STRUCTUREmag.org

STRUCTURE[®]

Advancements in Force Transfer Around Openings for Wood Framed Shear Walls

Learning Objectives

- Investigate past and current methods for determining force transfer around openings for wood shear walls
- Compare the effects of different sizes of openings and fullheight piers, and their relationships to the three industry standards for calculation of force transfer around openings
- Assess new design methodologies for accurately estimating the forces around multiple openings with asymmetric piers
- Estimate the deflections for shear walls designed using the force transfer around openings design method
- Apply the FTAO design methodology to an example
- Introduce APA's new force transfer around opening design resources

Shear Wall Design Challenges (SDPWS-15 4.3.5)

Segmented

- 1. Aspect Ratio up to 2:1 for wind and seismic
- 2. Aspect ratio up to 3.5:1, if allowable shear is reduced by 1.25-0.125h/bs

Perforated

- 1. Code provides specific requirements
- 2. The capacity is determined based on empirical equations and tables

Force Transfer

- 1. Code does not provide guidance for this method
- 2. Different approaches using rational analysis could be used

Segmented Wood Shear Walls (SDPWS-15 Section 4.3.5.1)

Aspect ratio h:b_s as shown in figure

Segmented Wood Shear Walls

Aspect Ratios SDPWS-15

- Standard shear walls
 Figure 4D
 - Wall width is defined as width of the full height sheathing adjacent to the opening but sheathing IS NOT required above and below openings
 - h:w must not exceed 2:1 or 3.5:1 ratio depending on sheathing material

Perforated Shear Walls (SDPWS-15 4.3.5.3)

- Openings accounted for by empirical adjustment factor
- Hold-downs only at ends
- Uplift between hold downs, t, at full height segments is also required
- Limited to 870 plf (ASD, seismic)

Aspect ratio applies to full height segment (dotted)

Perforated Shear Walls

Aspect Ratios SDPWS-15

Perforated shear walls Figure 4C

- Wall width is defined as width of the full height sheathing adjacent to the opening but full sheathing is provided above and below openings
- h:w must not exceed 2:1 or 3.5:1 ratio depending on sheathing material

Note: b, is the minimum shear wall segment length, b, in the perforated shear wall.

FTAO Shear Walls (SDPWS-15 Section 4.3.5.2)

Aspect ratio h:b as shown in figure

FTAO Shear Walls

Aspect Ratio SDPWS-15

Force Transfer Shear Walls Figure 4E

- Width of wall is defined as width of the full height sheathing adjacent to the opening and the height is the same as the opening height
- h:w must not exceed 2:1 or 3.5:1 ratio

Aspect ratio (SDPWS-15 4.3.4.2)

- Definition of h and w is the same as previous code
- ALL shear walls with 2:1 < aspect ratios <= 3.5:1 shall apply reduction factor, aspect ratio factor
 - Formerly applied only to high seismic
- Aspect Ratio Factor (WSP) = 1.25-0.125h/bs

Shear distribution to shear walls in line (SDPWS-15 4.3.3.4.1)

- Individual shear walls in line shall provide the same calculated deflection. Exception:
 - Nominal shear capacities of shear walls having 2:1<aspect ratio<=3.5:1 are multiplied by 2bs/h for design. Aspect ratio factor (4.3.4.2) need not be applied.

Shear Wall Design Challenges

Shear Wall Design Challenges

Typical FTAO Application

Residential, Multifamily

- Single Opening
- Design assumes equal pier width
- Commercial
 - Strap continuous wall line above and below openings
 - Fully sheath wall

Field Survey

- 18+ sites fall 2010 (LA, Orange and San Diego Counties)
- Multi-Family
 - 40-90% of all shear applications utilized FTAO
- Single-Family
 - 80% Minimum 1-application on front or back elevation
 - 70% Multiple applications on front, back or both
 - 25% Side wall application in addition to front or back application

History of FTAO Research at APA

Joint research project

- APA The Engineered Wood Association (Skaggs & Yeh)
- University of British Columbia (Lam & Li),
- USDA Forest Products Laboratory (Rammer & Wacker)

Study was initiated in 2009 to:

- Examine the variations of walls with code-allowable openings
- Examines the internal forces generated during full-scale testing
- Evaluate the effects of size of openings, size of full-height piers, and different construction techniques
- Create analytical modeling to mimic testing data

Research Overview

Study results will be used to:

- Support design methodologies in estimating the forces around the openings
- Develop rational design methodologies for adoption in the building codes and supporting standards

S IN HIGH RISK RPPLICATION

Create new tools/methodology for designers to facilitate use of FTAO

- Drag Strut Analogy
- Cantilever Beam Analogy
- Diekmann Method
 - Thompson Method

Drag Strut Analogy

- Forces are collected and concentrated into the areas above and below openings
- Strap forces are a function of opening and pier widths

Cantilever Beam Analogy

- Forces are treated as moment couples
- Segmented panels are piers at sides of openings
- Strap forces are a function of height above and below opening and pier widths

Diekmann

- Assumes wall behaves as monolith
- Internal forces resolved via principles of mechanics

Design Examples

Ex. 1 – Drag Strut Analogy

• v^p = 2,000/(10.3) = 194 plf
• v = 2,000/(2.3 + 4) = 317 plf

Ex. 1 – Drag Strut Analogy

- $F_1 = (317-194)*L_1$
- $F_2 = (317-194)*L_2$
- F₁ = (317-194)*2.3 = 284 lbf
- F₂ = (317-194)*4 = 493 lbf

v = 2,000/(2.3 + 4) = 317 plf

- v = 2,000/(2.3 + 4) = 317 plf
 V₁ = 317 * 2.3 = 730 lbf
- V₂ = 317 * 4 = 1,270 lbf

$$\sum M_{1} = 0$$

$$F_{1} * h_{u} = v_{1} * (h_{u} + h_{o}/2)$$

$$F_{1} * 2 = 730 * (2 + 4/2)$$

$$F_{1} = (730 * 4)/2 = 1,460 \text{ lbf}$$

$$F_{2} * h_{L} = v_{2} * (h_{L} + h_{o}/2)$$

$$F_{2} * 2 = 1,270 * (2 + 4/2)$$

$$F_{2} = (1,270 * 4)/2 = 2,540 \text{ lbf}$$

H = (2,000 * 8) / 10.3 = 1,553 lbf

 $v_h = 2,000/(2.3 + 4) = 317 \text{ plf} = (V_B = V_G)$ $v_v = 1,553/(2 + 2) = 388 \text{ plf} = (V_D = V_E)$

F = 388 * 4 = 1,552 lbf

 $F_1 = 1,552 * 2.3/(2.3 + 4) = 567$ lbf $F_2 = 1,552 * 4/(2.3 + 4) = 986$ lbf

 $V_A = V_C = V_F = V_H =$ 567/2.3 = 246 plf 986/4 = 246 plf 317 plf - 246 plf = 71 plf

Design Example Summary

2,000 lbf

Drag Strut Analogy

- F1 = 284 lbf
- F2 = 493 lbf

Cantilever Beam Analogy

- F1 = 1,460 lbf
- F2 = 2,540 lbf

Diekmann Method

- F1 = 567 lbf
- F2 = 986 lbf

References

Drag Strut Analogy

 Martin, Z.A. 2005. Design of wood structural panel shear walls with openings: A comparison of methods. Wood Design Focus 15(1):18-20

Cantilever Beam Analogy

Martin, Z.A. (see above)

Diekmann Method

- Diekmann, E. K. 2005. Discussion and Closure (Martin, above), Wood Design Focus 15(3): 14-15
- Breyer, D.E., K.J. Fridley, K.E. Cobeen and D. G. Pollock. 2007. Design of wood structures ASD/LRFD, 6th ed. McGraw Hill, New York.

Thompson Method

 SEAOC. 2007. 2006 IBC Structural/Seismic Design Manual, Volume 2: Building Design Examples for Light-frame, Tilt-up Masonry. Structural Engineers Association of California, Sacramento, CA

CUREE Basic Loading Protocol

- 12 wall configurations tested (with and without FTAO applied)
- Wall nailing: 10d commons (0.148" x 3") at 2" o.c.
- Sheathing: 15/32 Perf Cat oriented strand board (OSB) APA Structural I
- All walls were 12 feet long and 8 feet tall
- Cyclic loading protocol following ASTM E2126, Method C, CUREE Basic Loading Protocol

<u>Wall1</u>

Objective: Est. baseline case for 3.5:1 segmented wall

<u>Wall 2</u>

<u> Wall 3</u>

Objective: No FTAO, compare to Wall 1 and 2. Examine effect of compression blocking.

Wall is symmetric, sheathing on right pier not shown for clarity

<u> Wall 4</u>

Objective: FTAO, compare to Wall 1. Examine effect of straps

Wall is symmetric, sheathing and force transfer load measurement on right pier not shown for clarity

<u>Wall 5</u>

Objective: FTAO, compare to Wall 4. Examine effect of straps with larger opening

Wall is symmetric, sheathing and force transfer load measurement on right pier not shown for clarity

Wall 6

Objective: Compare to Wall 4. Examine effect of sheathing around opening

Wall is symmetric, sheathing and force transfer load measurement on right pier not shown for clarity

<u>Wall 7</u>

Objective: Est. baseline case for 2:1 segmented wall

<u> Wall 8</u>

Objective: Compare FTAO to Wall 7

Wall is symmetric, sheathing and force transfer load measurement on right pier not shown for clarity

<u>Wall 9</u>

Objective: Compare FTAO to Wall 7 and 8. Collect FTAO data for wall with larger opening

Wall is symmetric, sheathing and force transfer load measurement on right pier not shown for clarity

<u>Wall 10</u>

Objective: FTAO for 3.5:1 Aspect ratio

pier wall. No sheathing below opening. Two hold downs on pier (fixed case)

Wall is symmetric, sheathing and force transfer load measurement on right pier not shown for clarity

<u>Wall 11</u>

not shown for clarity

Testing Observation

Wall 13

Information obtained

- Cyclic hysteretic plots and various cyclic parameters of the individual walls
- Hold down force plots
- Anchor bolt forces plots
- Hysteric plots of the applied load versus the displacement of the walls
- Hysteric plots of the applied load versus strap forces

Measured vs Predicted Strap Forces

	Measured Strap		Error ⁽²⁾ For Predicted Strap Forces at ASD Capacity (%)							
	Forces (lbf) ⁽¹⁾						Diekmann			
			Drag Strut Technique		Cantilever Beam Technique		Technique	Thompson Technique		
Wall ID	Тор	Bottom	Тор	Bottom	Тор	Bottom	Top/Bottom	Тор	Bottom	
Wall 4a	687	1,485	178%	82%	652%	183%	132%	406%	115%	
Wall 4b	560	1,477	219%	83%	800%	184%	133%	499%	115%	
Wall 4c ⁽³⁾	668	1,316	183%	93%	670%	207%	149%	418%	129%	
Wall 4d	1,006	1,665	122%	73%	445%	164%	118%	278%	102%	
Wall 5b	1,883	1,809	65%	68%	327%	256%	173%	204%	160%	
Wall 5c ⁽³⁾	1,611	1,744	76%	70%	382%	265%	187%	238%	166%	
Wall 5d	1,633	2,307	75%	53%	377%	201%	141%	235%	125%	
Wall 6a	421	477	291%	256%	1063%	571%	410%	663%	357%	
Wall 6b	609	614	201%	199%	735%	444%	319%	458%	277%	
Wall 8a	985	1,347	118%	86%	808%	359%	138%	269%	120%	
Wall 8b ⁽⁴⁾	1,493	1,079	78%	108%	533%	449%	124%	177%	150%	
Wall 9a	1,675	1,653	69%	70%	475%	383%	185%	217%	166%	
Wall 9b	1,671	1,594	69%	73%	476%	397%	185%	218%	172%	
Wall 10a	1,580	n.a. ⁽⁵⁾	73%	n.a. ⁽⁵⁾	496%	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	
Wall 10b	2,002	n.a. ⁽⁵⁾	58%	n.a. ⁽⁵⁾	391%	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	
Wall 11a	2,466	n.a. ⁽⁵⁾	47%	n.a. ⁽⁵⁾	318%	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	
Wall 11b	3,062	n.a. ⁽⁵⁾	38%	n.a. ⁽⁵⁾	256%	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	
Wall 12a	807	1,163	81%	94%	593%	348%	128%	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	
Wall 12b	1,083	1,002	60%	109%	442%	403%	138%	n.a. ⁽⁵⁾	n.a. ⁽⁵⁾	

Local Response

- The response curves are representative for wall 1 & 2
- Compares segmented piers vs. sheathed with no straps
- Observe the increased stiffness of perforated shear (Wall 2) vs. the segmented shear (Wall 1)

Testing Observation

Wall 4

Narrow piersDeep sill

Testing Observation

Wall 5

Increased opening from Wall 4Shallow sill

Local Response

Comparison of opening size vs. strap forces • Compared Wall 4 to 5

Global Response

- Comparison of opening size vs. strap forces
- Wall 4 vs. 5 reduction in stiffness with larger opening
- Wall 4 & 5d demonstrated increased stiffness as well as strength over the segmented walls 1 & 2
- Larger openings resulting in both lower stiffness and lower strength.
- Relatively brittle nature of the perforated walls
- Shear walls resulted in sheathing tearing

Other Testing Observations

Failure modes expected (Wall 5)

- Relatively brittle nature of the perforated walls
 - Shear walls resulted in sheathing tearing
- Concentration of forces from analysis (Thompson)
 - Drives shear type and nailing

Other Testing Observations

Failure modes

Contributions of wall segments

- Variable stiffness
- Banging effect

C-shaped Panels

- APA FTAO Test Wall 6
- Framing status quo
- Reduce/eliminate strap force

Advancements in FTAO

Strapping Above and Below Openings

SDWPS Section 4.3.5.2 specifies collectors

- Full length horizontal elements. Top & Bottom Plates, drag struts, beams, etc..
- Transfer forces from diaphragm into shear wall
- Strapping is not a collector
 - Can be discontinuous
 - Resists internal tension forces not shear
 - Similar to hold downs at end of wall

Conclusions

- 12 assemblies tested, examining the three approaches to designing and detailing walls with openings
 - Segmented
 - Perforated Shear Wall
 - Force Transfer Around Openings
- Walls detailed for FTAO resulted in better global response

Conclusions

 Comparison of analytical methods with tested values for walls detailed as FTAO

- The drag strut technique was consistently un-conservative
- The cantilever beam technique was consistently ultraconservative
- Thompson provides similar results as Diekmann
- Thompson & Diekmann techniques provided reasonable agreement with measured strap forces
- Better guidance to engineers will be developed by APA for FTAO
 - Summary of findings for validation of techniques
 - New tools for IBC wall bracing

Report Available

www.apawood.org/publications

		The leading resource for information about engineered wood products							
	APA			TECHNICAL RESEARC	CH MANUFACTURER DIRECTORY		search terms	<mark>م</mark>	
	PRODUCTS	RESOURCE LIBRARY	DESIGN & BUIL	D ABOUT US FEATURE	ED SITES	A Marine	SIC	GN IN	
HA	Search				194912.421. <u>6</u> 0%	- 197 28 11 12 12 12 12 12 12 12 12 12 12 12 12	CAROLDOF / L.S.		
		Public	cations	SEARCH					
	TIP: Choose categorie	multiple results.	< 1 2	3 4 5 > >	10 Items Per Page	Featured	•	and the	
	PRODUC Cross-I Chilar Enter Tran	۳ "Force Sfer"	ZZZ Frightword Wood	FEATURED PUBLICATION APA Engineered Wood Construc Comprehensive guide to engineered buildings, Includes information on ply structural composite lumber, typical s diaphragms, shear walls, fire-rated s PURCHASE ITEM (\$12.00)	ction Guide wood construction systems for both re wood and oriented strand board (woo specifications, and design recommend ystems, and methods of finishing. <i>Rev</i> FREE DOWNLOAD SHOW EX	esidential and commercia d structural panels), glula ations for floor, wall, and <i>ised July 2016.</i> CERPTS	E30 Vindustrial Irm, I-joists, roof systems,		
1/	or "I	M410" s 28.5 MI		Guide to the 2015 IRC Wood Wa Provides an explanation of the latera from the ICC at <u>Guide to the 2015 IR</u>	I II Bracing Provisions I bracing provisions of the 2015 Intern I <u>C Wood Wall Bracing Provisions</u> .	ational Residential Code	(IRC). Available		
	o page	5, 20.5 Wi	Abared Franig	FEATURED PUBLICATION Advanced Framing Construction This guide details several advanced Resistance of Wood Structural Pane PURCHASE ITEM (\$2.00)	n Guide framing techniques. For further details I Sheathed Walls, Form TT-110. Revisi REE DOWNLOAD	, also see APA Technical ed April 2016.	M400 Topics: Wind		
6	1		Structural Paul St Tegeneral Word Inschool	2018 Structural Panel & Enginee	ered Wood Yearbook	o download after checkou	MKO-E184		

here for order details," then scroll down and click "Download" on the "APA Store | Order Details" tab to access the

Multiple Openings

APA FTAO Testing Wall 12

- Multiple openings
- Asymmetric pier widths
- Diekmann Rational Analysis

Advancements in FTAO

SEAOC Convention 2015 Proceedings Basis of APA Technical Note Form T555

2015 SEAOC CONVENTION PROCEEDINGS

Karyn Beebe, P.E., LEED AP BD+C APA San Diego, CA

> Tom Skaggs, P.E., Ph.D. APA Tacoma, WA

Abstract

A joint research project of APA – The Engineered Wood Association, University of British Columbia (UBC), and USDA Forest Products Laboratory was initiated in 2009 to examine the variations of walls with code-allowable openings. This study examines the internal forces generated during these tests and evaluates the effects of size of openings, size of full-height piers, and different analysis techniques, including the segmented method, the perforated

Introduction

Force transfer around openings (FTAO) is a popular method of shear wall analysis for wood-framed shear walls. However, the analysis method varies from engineer to engineer, published design examples typically assume the wall is symmetric around a single opening, and until recently, this design method has not been tested.

Diekmann Technique: Conceptual Keys

The method assumes the following:

- The unit shear above and below the openings is equivalent.
- The corner forces are based on the shear above and below the openings and only the piers adjacent to that unique opening.
- The tributary length of the opening is the basis for calculating the shear to each pier. This tributary length is the ratio of the length of the pier multiplied by the length of the opening it is adjacent to, then divided by the sum of the length of the pier and the length of the pier on the other side of the opening.
 - For example, T1 = (L1*Lo1)/(L1+L2)

Diekmann Technique: Conceptual Keys

The method assumes the following:

- The shear of each pier is the total shear divided by the L of the wall, multiplied by the sum of the length of the pier and its tributary length, divided by the length of the pier:
 - (V/L)(L1+T1)/L1
- The unit shear of the corner zones is equal to subtracting the corner forces from the panel resistance, R. R is equal to the shear of the pier multiplied by the pier length:
 - Va1 = (v1L1 F1)/L1

Diekmann Technique: Conceptual Keys

The method assumes the following:

 Once the entire segment shears have been calculated, then the design is checked by summing the shears vertically along each line. The first and last line equal the hold-down force, and the rest should sum to zero.

Deflection Calculations - Concept

Deflection Calculations

Wall drift estimation when using FTAO

Historical 4-term deflection equation

Average deflection, varying h

Shear Wall Design Examples

Force Transfer Around Opening Approach

Shear Wall Design Examples

Standard Example Wall with 3 openings.

V = 3,750 lb

Does not consider contribution of sheathing above and below openings

1. Unit Shear

V = V/∑L = 3,750/15 = 250 lbs/ft

- 2. Allowable Shear 3'-6" walls v allowable = 380 (0.875)=332 lbs/ft > 250 lbs/ft 15/32" Rated Sheathing 8d @ 4"o.c. at 3.5' walls
- 3. Allowable Shear 4' walls (2:1 h:w)
 - v allowable = 260lb/ft > 250 lbs/ft

15/32" Rated Sheathing 8d @ 6"o.c. @ 4' walls

4. Hold-down forces H = vh = 250 x 8 = 2,000 lbs

8 – hold downs @ 2000+ lb capacity

Summary

Shear Wall Design Examples

Segmented Shear Wall Approach

FTAO Approach

APA

FTAO Approach

- Calculate the hold-down forces: H = Vh/L = (3750 x 8')/19.5' = 1538lbs
- Solve for the unit shear above and below the openings:
 va = vb = H/(ha+hb) = 1538/(1.33'+4') = 289 plf

CK: The unit shear above and below the openings is equivalent.

FTAO Approach

3. Find the total boundary force above and below the openings First opening: O1 = va x (Lo1) = 289 plf x 6' = 1734lbs Second opening: O2 = va x (Lo2) = 289 plf x 2' = 578lbs

CK: The corner forces are based on the shear above and below the openings and only the piers adjacent to that unique opening.

4. Calculate the corner forces: F1 = O1(L1)/(L1+L2) = 866# F3 = O2(L2)/(L2+L3) = 308#

F2 = O1(L2)/(L1+L2) = 866# F4 = O2(L3)/(L2+L3) = 269#

CK: Strap forces

5. Tributary length of openings (ft)

T1 = L1(Lo1)/(L1+L2) = 3' T2 = L2(Lo1)/(L1+L2) = 3'

T3 = L2(Lo2)/(L2+L3) = 1.1, T4 = L3(Lo2)/(L2+L3) = 0.9

CK: Ratio of the length of the pier x length of the opening it is adjacent to, then / (length of the pier + length of the pier on the other side of the opening).

6. Unit shear beside the opening
V1 = (V/L)(L1+T1)/L1 = 337 plf V2 = (V/L)(T2+L2+T3)/L2 = 388 plf
V3 = (V/L)(T4+L3)/L3 = 244 plf Check V1*L1 +V2*L2+V3*L3=V? YES

CK: The shear of each pier = the total shear / the L of the wall x (length of the pier + its tributary length)/ by the length of the pier

- 7. Resistance to corner forces 8.
 - R1=V1*L1 = 1346lbs
 - R2 = V2*L2 = 1551lbs
 - R3 = V3*L3 = 853lbs

- . Resistance corner force
 - R1-F1 = 480lbs
 - R2-F2-F3 = 377lbs
 - R3-F4 = 583lbs

9. Unit shear in the corner zones

- va1 = (R1-F1)/L1 = 120 plf
- va2 = (R2-F2-F3)/L2 = 94 plf
- va3 = (R3-F4)/L3 = 167 plf

CK: The unit shear of the corner zones = panel resistance (*R*) - the corner forces . *R* = the shear of the pier *x* the pier length.

10. Check your solution – YES to all

- Line 1: va1(ha+hb)+v1(ho)=H?
- Line 2: va(ha+hb)-va1(ha+hb)-V1(ho)=0?
- Line 3: va2(ha+hb)+V2(ho)-va(ha+hb)=0?
- Line 4 = Line 3
- Line 5: va(ha+hb)-va3(ha+hb)-V3(ho)=0?
- Line 6: va3(ha+hb)+V3(ho)=H?

CK: Once all segment shears are calculated, check the design by summing the shears vertically along each line. The 1st and last = holddown force, and the rest should = zero.

Shear Wall Design Examples

Segmented Approach

15/32" Rated sheathing 8d @ 4"o.c. (3'-6" walls) 8d @ 6" o.c. (4' walls) 8 – hold downs @ 2000+ Ib capacity

Force Transfer

15/32" Rated Sheathing 8d @ 4"o.c. 2 – hold downs @ 1,538 lb capacity 2 Straps – 866 lb

Shear Wall Design Examples

• 3.5:1 for 10'-0" = 34"

FTAO uses heights adjacent to openings

3.5:1 for 7'-0" = 24" 2:1 for 4'-0" = 24"

www.apawood.org/FTAO

Force Transfer Around Openings (FTAO)

VERSATILE SHEAR WALL ANALYSIS METHOD LENDS GREATER DESIGN FLEXIBILITY

Wood structural panel sheathed shear walls and diaphragms are the primary lateral-load-resisting elements in wood-frame construction. As wood-frame construction is continuously evolving, designers in many parts of the U.S. are optimizing design solutions that require the understanding of force transfer between elements in the lateral load-resisting system.

The force transfer around openings (FTAO) method of shear wall analysis offers some advantages compared to other methods:

- More versatility, because the FTAO method allows for the use of narrower wall segments while meeting required height-to-width ratios. and
- · A high likelihood that fewer hold-downs will be required.

Design for Force Transfer Around Openings (FTAO)

Technical Note: Design for Force Transfer Around Openings

This technical note presents a rational analysis for applying FTAO to walls with asymmetric piers and walls with multiple openings. It is based upon APA modeling and testing and uses methodology that assists the design professional in solving for the required sheathing, nailing, hold-downs, straps, and maximum deflection.

DOWNLOAD

FTAO CALCULATOR

APA Force Transfer Around Openings Calculator

This calculator is an Excel-based tool for professional designers that uses FTAO methodology to calculate maximum hold-down force for uplift resistance, the required horizontal strap force for the tension straps above and below openings, the maximum shear force to determine sheathing attachment, and the maximum deflection of the wall

Webinar:

Resolving Wood Shear Wall Design Puzzles with Force Transfer Around Openings, DES415, AWC

Provides an overview of the force transfer around openings (FTAO) shear wall design approach, recent research in this area, and a side-by-side comparison of design results between segmented, perforated, and FTAO design methods. AIA, ICC, and NCSEA credits available. Presented by Jared Hensley, PE, APA Engineered Wood Specialist.

www.apawood.org/FTAO

oper design of second decar works in a most composite of the functions is not provide the function in the provide the function of the function provide the function of the function provide the function of the function	NUM I STREET STREET	
Control to engine to be (post Progr- reases to The Levi Levi Levin, SCPTA-C) care 13.55 the three decay methods headed McMaight will approximately the method McMaight will approximately the protocol for search of the McMaight of performed these wells: (performable of method has been been decay and coloring).	¥ +++	i.
O des valo en vend-travers (and- traver) yan a a conset man (and traver) des-orthogones; The VAP conde- lines andre fall-travers de didag and fall-travers and the amounting of the of the VAP alsos and when appears and and the VAP alsos and when appears in the difference of the traverse match of the VAP also and when any match of the total second and any	ţ	ţ
	АРА	

FTAO CALCULATOR

Technical Note: Design for Force Transfer Around Openings

This technical note presents a rational analysis for applying FTAO to walls with asymmetric piers and walls with multiple openings. It is based upon APA modeling and testing and uses methodology that assists the design professional in solving for the required sheathing, nailing, hold-downs, straps, and maximum deflection

DOWNLOAD

APA Force Transfer Around Openings Calculator

This calculator is an Excel-based tool for professional designers that uses FTAO methodology to calculate maximum hold-down force for uplift resistance, the required horizontal strap force for the tension straps above and below openings, the maximum shear force to determine sheathing attachment, and the maximum deflection of the wall system. The calculator includes worksheets for shear walls with one, two, and three openings and a design example.

DOWNLOAD

APA Force Transfer Around Openings Calculator

FTAO Technical Note: Form T555

- Technical Note: Design for Force Transfer Around Openings (FTAO)
 - APA Form T555
- Presents a rational analysis for applying FTAO to walls with asymmetric piers and walls with multiple openings
- Based on Wall 12 testing configuration

Design for Force Transfer Around Openings (FTAO) Number T555 January 2018 Force transfer around openings (FTAO) is a popular method of shear wall analysis for wood-framed buildings. The use of FTAO analysis varies, however, because published design examples typically assume the wall is symmetric around a single opening and, until recently, this design method had not been tested. This technical note presents a rational analysis for applying FTAO to walls with asymmetric piers and walls with multiple openings. It is based upon APA modeling and testing and uses methodology that assists the design professional in solving for the required sheathing, nailing, hold-downs, straps, and maximum deflection. As a companion to this technical note, APA has developed an Excel-based Force Transfer Around Openings Calculator, available for free download at www.apawood.org/FTAO. SHEAR WALL DESIGN CHALLENGES Proper design of wood shear walls is a FIGURE 1 critical component of the lateral force resisting system. The International Building Code REPRESENTATION OF FORCE TRANSFER AROUND OPENINGS (FTAO) METHODOLOGY (IBC) refers the engineer to the Special Design Provisions for Wind and Seismic (SDPWS-15 ь, Section 4.3.5) for three design methods: individual full-height wall segments (segmented), force-transfer shear walls (FTAO), and perforated shear walls (perforated). Each method has benefits and challenges FTAO shear walls use wood structural panels (WSPs)-plywood or oriented strand board (OSB)-with openings. The WSPs transfer the shear, anchor bolts resist the sliding, and hold-downs resist the overturning of the wall. Generally, flat steel straps are used on top of the WSPs above and below openings to transfer tension forces, with flat blocking on the inside of the wall to transfer compression forces around the opening (Figure 1). Aspect ratio, h/b,, as shown in figure

FTAO Technical Note: Form T555

- Provides a design example for FTAO wall with two window openings
- FTAO Calculator: Companion to Technical Note

The following example was based on calculations from APA's Force Transfer Around Openings Calculator worksheet (an Excel spreadsheet, available for free download at www.apawood.org/FTAO). One may observe minor mathematical differences as a result of numerical rounding in this publication.

- 1. Calculate the hold-down forces: H=V × h/L = 3,750×8/19.5 = 1,538 lbf
- 2. Solve for the unit shear above and below the openings: $v_{\mu} = v_{\mu} = H/(h_{\mu}+h_{\mu}) = 1,538/(4+1.33) = 288 \text{ plf}$
- 3. Find the total boundary force above and below the openings
 - **a.** First opening: $O_1 = v_a \times (L_{o1}) = 288 \times 6 = 1731$ lbf
 - **b.** Second opening: $O_2 = v_1 \times (L_{22}) = 288 \times 2 = 577$ lbf
- 4. Calculate the corner forces:
 - **a.** $F_1 = O_1(L_1)/(L_1 + L_2) = 1,731 (4)/(4 + 4) = 865 \text{ lbf}$
- **b.** $F_2 = O_1(L_2)/(L_1 + L_2) = 1,731 (4)/(4 + 4) = 865 \text{ lbf}$
- c. F₁ = O₂(L₂)/(L₂ + L₂) = 577 (4)/(4 + 3.5) = 308 lbf
- **d.** $F_4 = O_3(L_3)/(L_3 + L_3) = 577 (3.5)/(4 + 3.5) = 269 \text{ lbs}$

APA FTAO Calculator

- Excel-based tool released January 2018
- Based on design methodology developed by Diekmann
- Calculates:
 - Max hold-down force for uplift resistance
 - Required horizontal strap force above and below openings
 - Max shear force for sheathing attachments
 - Max deflection

 Design example corresponds with FTAO Technical Note (Form T555)

DOWNLOAD

APA Force Transfer Around Openings Calculator

This calculator is an Excel-based tool for professional designers that uses FTAO methodology to calculate maximum hold-down force for uplift resistance, the required horizontal strap force for the tension straps above and below openings, the maximum shear force to determine sheathing attachment, and the maximum deflection of the wall system. The calculator includes worksheets for shear walls with one, two, and three openings and a design example.

APA FTAO Calculator

www.apawood.org/FTAO

Force Transfer Around Openings Calculator

The force transfer around openings (FTAO) method of shear wall analysis is an approach that aims to reinforce the wall such that it performs as if there was no opening. This approach lends certain advantages over segmented shear walls: more versatility, because it allows for narrower wall segments while still meeting the height-to-width ratios and, often, fewer required hold-downs.

Force Transfer Around Openings (FTAO) Calculator Instructions

The APA Force Transfer Around Openings (FTAO) Calculator is divided into three worksheets: shear wall with one opening, shear wall with two openings, and shear wall with three openings. Each calculation tab will produce the maximum hold-down force for uplift resistance, the required horizontal strap force for the tension straps above and below openings, the maximum shear force to determine sheathing attachment, and the maximum deflection of the wall system.

To use the calculator, input the required information into the ORANGE input cells; definitions for the required cell inputs can be found below. Move quickly between input cells by using the TAB key. Certain input cells, such as the Hold-Down Capacity input in the deflection calculation, have comment dialogue to clarify the input.

Variables for Shear Wall Calculations

- V = Applied shear as lateral force at top of wall in pounds (lb).
- L(i) = Length of individual wall pier segment as indicated by L1, L2, L3 and L4 measured in feet (ft).
- Lo(i) = Length for individual clear openings as indicated by Lo1, Lo2 and Lo3 measured in feet (ft).
- ho1 = Maximum clear opening height of any opening in the wall system. Will be reported as ho1, ho2 and ho3 measured in feet (ft).
- ha1 = Height of continuous sheathing above the opening in correlation with ho1 above. Will be reported as ha1, ha2 and ha3 measured in feet (ft).
- hb1 = Height of continuous sheathing below the opening in correlation with ho1 above. Will be reported as hb1, hb2 and hb3 measured in feet (ft).
- hwall = Total calculated height of shear wall from bottom of sill plate to top of top plate measured in feet (ft). Calculated as the summation of ho1, ha1, and hb1.
- L_{wall} = Total calculated length of shear wall measured in feet (ft). Calculated as the summation of L(i) and Lo(i).

Variables for Shear Wall Deflection Calculations

 Instructions & Definitions	Design Example	One Opening	Two Openings	Three Openings (+)	: •

FTAO Calculator: Design Example

www.apawood.org/FTAO

Force Transfer Around Openings Calculator

design example

19.50 ft

Lwall

The force transfer around openings (FTAO) method of shear wall analysis is an approach that aims to reinforce the wall such that it performs as if there was no opening. This approach lends certain advantages over segmented shear walls: more versatility, because it allows for narrower wall segments while still meeting the height-to-width ratios and, often, fewer required hold-downs.

Date:

Project Information

Code: 2015 IBC Designer: APA Client:

Project: Design Example Wall Line:

Shear Wall Calculation Variables

V	3750 lbf		Opening 1		Opening 2	Wall Pier As	pect Ratio	Adj. Factor
L1	4.00 ft	ha1	1.33 ft	ha2	1.33 ft	P1=ho1/L1=	0.67	N/A
L2	4.00 ft	ho1	2.67 ft	ho2	2.67 ft	P2=ho2/L2=	0.67	N/A
L3	3.50 ft	hb1	4.00 ft	hb2	4.00 ft	P3=ho2/L3=	0.76	N/A
h _{wall}	8.00 ft	Lo1	6.00 ft	Lo2	2.00 ft			

1. Hold-down forces: H = Vh _{wall} /L _{wall}	1. Hold-down forces: H = Vh _{wall} /L _{wall} 1538 lbf		
2. Unit shear above + below opening		V1 = (V/L)(L1+T1)/L1 =	337 plf
First opening: va1 = vb1 = H/(ha1+hb1)	= 288 plf	V2 = (V/L)(T2+L2+T3)/L2 =	388 plf
Second opening va7 - vh7 - H//ha7+h 21	- 288 nlf	1/2 - (1//I)/T/I+I 2)/I 2 -	244 nlf
Instructions & Definitions Design Example Or	ne Opening 📗 Two Openi	ngs 🛛 Three Openings 🛛 🕀	

FTAO Calculator: One Opening

www.apawood.org/FTAO

Force Transfer Around Openings Calculator

The force transfer around openings (FTAO) method of shear wall analysis is an approach that aims to reinforce the wall such that it performs as if there was no opening. This approach lends certain advantages over segmented shear walls: more versatility, because it allows for narrower wall segments while still meeting the height-to-width ratios and, often, fewer required hold-downs.

Project Information

Project Informa	ition	
Code:		Date:
Designer:		
Client:		
Project:		
Wall Line:		

FTAO Calculator: Two Openings

www.apawood.org/FTAO

Force Transfer Around Openings Calculator

two openings

The force transfer around openings (FTAO) method of shear wall analysis is an approach that aims to reinforce the wall such that it performs as if there was no opening. This approach lends advantages over segmented shear walls: more versatility, because it allows for narrower wall segments while still meeting the height-to-width ratios and, often, fewer required hold-downs.

FTAO Calculator: Three Openings

www.apawood.org/FTAO

Force Transfer Around Openings Calculator

The force transfer around openings (FTAO) method of shear wall analysis is an approach that aims to reinforce the wall such that it performs as if there was no opening. This approach lends certain advantages over segmented shear walls: more versatility, because it allows for narrower wall segments while still meeting the height-to-width ratios and, often, fewer required hald-downs.

FTAO Calculator: Inputs

FTAO Calculator: Inputs

FTAO Calculator: Shear wall analysis

1. Hold-down forces: H = Vh _{wall} /L _{wall}	1538 lbf	6. Unit shear beside opening	
2. Unit shear above + below opening		V1 = (V/L)(L1+T1)/L1 =	337 plf
First opening: va1 = vb1 = H/(ha1+hb1) =	288 plf	V2 = (V/L)(T2+L2+T3)/L2 =	388 plf
Second opening: va2 = vb2 = H/(ha2+hb2) =	288 plf	V3 = (V/L)(T4+L3)/L3 =	244 plf
		Check V1*L1+V2*L2+V3*L3=V?	3750 lbf O
3. Total boundary force above + below openings			
First opening: O1 = va1 x (Lo1) =	1731 lbf	7. Resistance to corner forces	
Second opening: O2 = va2 x (Lo2) =	577 lbf	R1 = V1*L1 =	1346 lbf
		R2 = V2*L2 =	1551 lbf
4. Corner forces		R3 = V3*L3 =	853 lbf
F1 = O1(L1)/(L1+L2) =	865 lbf		
F2 = O1(L2)/(L1+L2) =	865 lbf	8. Difference corner force + resistance	
F3 = O2(L2)/(L2+L3) =	308 lbf	R1-F1 =	481 lbf
F4 = O2(L3)/(L2+L3) =	269 lbf	R2-F2-F3 =	378 lbf
		R3-F4 =	583 lbf
5. Tributary length of openings			
T1 = (L1*L01)/(L1+L2) =	3.00 ft	9. Unit shear in corner zones	
T2 = (L2*Lo1)/(L1+L2) =	3.00 ft	vc1 = (R1-F1)/L1 =	120 plf
T3 = (L2*Lo2)/(L2+L3) =	1.07 ft	vc2 = (R2-F2-F3)/L2 =	95 plf
T4 = (L3*Lo2)/(L2+L3) =	0.93 ft	vc3 = (R3-F4)/L3 =	167 plf

FTAO Calculator: Shear wall analysis

Design Summary

Req. Sheathing Capacity	388 plf	4-Term Deflection	0.316 in.	3-Term Deflection	0.335 in.
Req. Strap Force	865 lbf	4-Term Story Drift %	0.013 %	3-Term Story Drift %	0.014 %
Req. HD Force (H)	1538 lbf		See Page 2	-	See Page 3

FTAO Calculator: Design Output

Design output:

- Required sheathing capacity
- Required strap force above and below openings
- Required hold-down force
- Maximum deflection

Design Summary									
Req. Sheathing Capacity	388 plf	4-Term Deflection	0.316 in.	3-Term Deflection	0.335 in.				
Req. Strap Force	865 lbf	4-Term Story Drift %	0.013 %	3-Term Story Drift %	0.014 %				
Req. HD Force (H)	1538 lbf		See Page 2		See Page 3				

APA

FTAO Calculator

Shear Wall Deflection Calculation Variables Sheathing: Wood End Post Values: Sheathing Material Species: Hem-Fir No.2 OSB E: 1.60E+06 (psi) 7/16 Performance Category APA Rated Sheathing Grade Qty Stud Size 2 2x6 Dimensions: (in.²) Gt Override 16.5 A: Ga Overide (in.²) A Override:

Nail Type:	8d common	(penny weight)	
	Pier 1	Pier 3	
Nail Spacing:	4	4	(in.)
HD Capacity:	2145	2145	(lbf)
HD Deflection:	0.128	0.128	(in.)

Four-Term Equation Deflection Check

	$\Delta = \frac{8vh^3}{EAb} -$	+ <u>vh</u> + 0.75	$bhe_a + d_a \frac{h}{b}$	(Equation 23-2)			
	Pier 1-L	Pier 1-R	Pier 2-L	Pier 2-R	Pier 3-L	Pier 3-R	
Sheathing:	7/16	7/16	7/16	7/16	7/16	7/16	
Nail:	8d common	8d common	8d common	8d common	8d common	8d common	
v _{asd} :	337	337	388	388	244	244	(plf)
V _{strength} :	481	481	554	554	348	348	(plf)
E:	1.60E+06	1.60E+06	1.60E+06	1.60E+06	1.60E+06	1.60E+06	(psi)
h:	8.00	4.00	4.00	4.00	4.00	8.00	(ft)
A:	16.5	16.5	16.5	16.5	16.5	16.5	(in.²)
Gt:	83,500	83,500	83,500	83,500	83,500	83,500	(lbf/in.)
Nail Spacing:	4	4	4	4	4	4	(in.)
Vn:	160	160	185	185	116	116	(plf)
e:	0.0172	0.0172	0.0264	0.0264	0.0065	0.0065	(in.)
b:	4.00	4.00	4.00	4.00	3.50	3.50	(ft)
HD Capacity:	2145	2145	2145	2145	2145	2145	(lbf)
HD Defl:	0.128	0.128	0.128	0.128	0.128	0.128	(in.)

FTAO Calculator

Three-Term Eq	uation Deflec						
$\delta_{sw} = \frac{8vh^3}{EAb} + \frac{vh}{1000G_a} + \frac{h\Delta_a}{b}$ (4.3-1)							
	Pier 1-L	Pier 1-R	Pier 2-L	Pier 2-R	Pier 3-L	Pier 3-R	
Sheathing:	7/16	7/16	7/16	7/16	7/16	7/16	
Nail:	8d common	8d common	8d common	8d common	8d common	8d common	
V _{asd} :	337	337	388	388	244	244	(plf)
v _{strength} :	481	481	554	554	348	348	(plf)
E:	1.60E+06	1.60E+06	1.60E+06	1.60E+06	1.60E+06	1.60E+06	(psi)
h:	8.00	4.00	4.00	4.00	4.00	8.00	(ft)
A:	16.5	16.5	16.5	16.5	16.5	16.5	(in.²)
Ga:	22.0	22.0	22.0	22.0	22.0	22.0	(kips/in.)
b:	4.00	4.00	4.00	4.00	3.50	3.50	(ft)
HD Capacity:	2145	2145	2145	2145	2145	2145	(lbf)
HD Defl:	0.128	0.128	0.128	0.128	0.128	0.128	(in.)

Check Total Deflection of Wall System

	Pier 1 (left)		Pier 1 (right)			
Term 1	Term 2	Term 3	Term 1	Term 2	Term 3	
Bending	Shear	Fastener	Bending	Shear	Fastener	
0.019	0.175	0.459	0.002	0.087	0.115	
	Sum	0.653		Sum 0.205		
	Pier 2 (left)		Pier 2 (right)			
Term 1	Term 2	Term 3	Term 1	Term 2	Term 3	
Bending	Shear	Fastener	Bending	Shear	Fastener	
0.003	0.101	0.132	0.003	0.101	0.132	
	Sum	0.236		Sum	0.236	

Total	
Defl.	
0.335	(in.)
0.0140	%drift
	-

FTAO Calculator: Final Output

Final Design Output

- Summary of input parameters
- FTAO shear wall analysis
- Summary of final design requirements
- Total calculated deflection
- Three-page shear wall design to include in calculation package
 - Print directly from Excel
 - Save as PDF

Benefits of FTAO with Continuous Wood Structural Panels

- For the Structural Engineer...
- Straightforward rational analysis
- Easy to program: Excel, web based application, or other
- Design check = confidence in calculations

CHECK				
Line 1: va1(ha+hb)+V1(ho)=H?	641	897	1538	
Line 2: va(ha+hb)-va1(ha+hb)-V1(ho)=0?	1538	641	897	C
Line 3: va2(ha+hb)+V2(ho)-va(ha+hb)=0?	504	1034	1538	C
Line 4 = Line 3				
Line 5: va(ha+hb)-va8(ha+hb)-V3(ho)=0?	1538	889	650	0
Line 6: va3(ha+hb)+V3(ho)=H?	889	650	1538	

Architectural flexibility

- Definition of aspect ratio
- Building envelope
 - Uninterrupted drainage plane
 - Minimize water intrusion

Structural Systems that Enhance Energy Efficiency

- High Performance Wall Systems
 - 2x6 Advanced Framing
 - Insulated headers and corners

Air Infiltration = Energy Loss

- Air barrier should be continuous
- Joints need to be sealed (i.e. blocked panel edges)
- Need water resistive barrier

Value proposition

- Reduction of more costly components
- Continuous nail base + stiffer wall = fewer callbacks due to:
 - Stucco cracking, water intrusion, wall buckling

Conclusions

www.apawood.org/FTAO

	The leading resource for information about engineered							
APA		TECHNI	CAL RESEARCH	MANUFACTURER DIRECTORY	CONTACT	enter search terms	Q	
PRODUCTS RESOURCE LIBRARY	DESIGN & BUILD	ABOUT US	FEATURED S	ITES			SIGN IN	

Force Transfer Around Openings (FTAO)

VERSATILE SHEAR WALL ANALYSIS METHOD LENDS GREATER DESIGN FLEXIBILITY

Wood structural panel sheathed shear walls and diaphragms are the primary lateral-load-resisting elements in wood-frame construction. As wood-frame construction is continuously evolving, designers in many parts of the U.S. are optimizing design solutions that require the understanding of force transfer between elements in the lateral load-resisting system.

The force transfer around openings (FTAO) method of shear wall analysis offers some advantages compared to other methods:

- · More versatility, because the FTAO method allows for the use of narrower wall segments while meeting required height-to-width ratios, and
- · A high likelihood that fewer hold-downs will be required.

Design for Force Transfer Around Openings (FTAO)

Technical Note: Design for Force Transfer Around Openings

This technical note presents a rational analysis for applying FTAO to walls with asymmetric piers and walls with multiple openings. It is based upon APA modeling and testing and uses methodology that assists the design professional in solving for the required sheathing, nailing, hold-downs, straps, and maximum deflection

APA Force Transfer Around Openings Calculator

This calculator is an Excel-based tool for professional designers that uses FTAO methodology to calculate maximum hold-down force for uplift resistance, the required horizontal strap force for the tension straps above and below openings, the maximum shear force to determine sheathing attachment, and the maximum deflection of the wall

Webinar:

Resolving Wood Shear Wall Design Puzzles with Force Transfer Around Openings, DES415, AWC

Provides an overview of the force transfer around openings (FTAO) shear wall design approach, recent research in this area, and a side-by-side comparison of design results between segmented, perforated, and FTAO design methods. AIA, ICC, and NCSEA credits available. Presented by Jared Hensley, PE, APA Engineered Wood Specialist.

Questions?

APA Help Desk: (253) 620-7400 help@apawood.org

www.apawood.org

Advancements in Force Transfer Around Openings for Wood Framed Shear Walls

